# DevStar AI+ DevOps DevStar AI+ DevOps 是一个完整的AI驱动研发平台解决方案,通过集成 DevStar平台、代码大语言模型、Gitea MCP Server和 AI Code Tools(Cursor、Claude Code、iFlow等),为开发者提供智能化研发支撑体系。 ## 🚀 快速部署配置指南 ### 一、部署 DevStar 代码托管平台 Ubuntu-20.04下完成安装: ``` wget -c https://devstar.cn/assets/install.sh && chmod +x install.sh && sudo ./install.sh sudo devstar start ``` 安装完成后,我们得到DevStar代码托管平台的URL,比如http://172.16.94.26:80 ### 二、Ollama私有部署代码大模型 > 如您使用第三方API及Token可以跳过这一部分。 Ubuntu-20.04下完成安装: ``` curl -fsSL https://ollama.com/install.sh | sh # 验证是否安装成功 ollama --version # 下载Qwen2.5-Coder大模型 ollama pull qwen2.5-coder:32b # 列出已下载的模型 ollama list # 测试模型 ollama run qwen2.5-coder:32b "Hello, can you help me code?" # 启动Ollama服务 (默认端口11434) ollama serve # 验证服务状态 curl http://172.16.94.26:11434/api/tags ``` * 解决Ollama只能本地访问的问题 ``` # 添加环境变量OLLAMA_HOST=0.0.0.0和OLLAMA_ORIGINS=* sed -i '/\[Service\]/a Environment=OLLAMA_HOST=0.0.0.0' /etc/systemd/system/ollama.service sed -i '/\[Service\]/a Environment=OLLAMA_ORIGINS=*' /etc/systemd/system/ollama.service # 重新加载并重启 systemctl daemon-reexec systemctl daemon-reload systemctl restart ollama ``` 安装完成后,我们得到API URL,比如http://172.16.94.26:11434/api/tags model比如qwen2.5-coder:32b token比如TOKEN*************** ### 三、在项目中使用代码大模型 #### 配置AI Code Review到CI/CD工作流中 在您的项目中添加.gitea/workflows/code-review.yml , 这里使用kekxv/AiReviewPR@v0.0.6来进行AI Code Review ``` name: ai-reviews on: pull_request: types: [opened, synchronize] jobs: review: runs-on: ubuntu-latest steps: - name: Checkout code uses: actions/checkout@v4 with: fetch-depth: 0 - name: Review code uses: kekxv/AiReviewPR@v0.0.6 with: model: ${{ vars.MODEL }} host: ${{ vars.OLLAMA_HOST }} REVIEW_PULL_REQUEST: false ``` DevStar代码托管平台中项目设置、用户设置和后台管理中都可以设置变量vars.MODEL、vars.OLLAMA_HOST等。 #### 安装配置MCP Server 在 VS Code 中使用,要快速安装,请使用如下安装按钮。 [![在 VS Code 中使用 Docker 安装](https://img.shields.io/badge/VS_Code-Install_Server-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect/mcp/install?name=gitea&inputs=[{%22id%22:%22gitea_token%22,%22type%22:%22promptString%22,%22description%22:%22Gitea%20Personal%20Access%20Token%22,%22password%22:true}]&config={%22command%22:%22docker%22,%22args%22:[%22run%22,%22-i%22,%22--rm%22,%22-e%22,%22GITEA_ACCESS_TOKEN%22,%22docker.gitea.com/gitea-mcp-server%22],%22env%22:{%22GITEA_ACCESS_TOKEN%22:%22${input:gitea_token}%22}}) [![在 VS Code Insiders 中使用 Docker 安装](https://img.shields.io/badge/VS_Code_Insiders-Install_Server-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect/mcp/install?name=gitea&inputs=[{%22id%22:%22gitea_token%22,%22type%22:%22promptString%22,%22description%22:%22Gitea%20Personal%20Access%20Token%22,%22password%22:true}]&config={%22command%22:%22docker%22,%22args%22:[%22run%22,%22-i%22,%22--rm%22,%22-e%22,%22GITEA_ACCESS_TOKEN%22,%22docker.gitea.com/gitea-mcp-server%22],%22env%22:{%22GITEA_ACCESS_TOKEN%22:%22${input:gitea_token}%22}}&quality=insiders) 也可以在项目中添加到 .vscode/mcp.json 文件如下: ``` { "mcp": { "inputs": [ { "type": "promptString", "id": "gitea_token", "description": "Gitea 个人访问令牌", "password": true } ], "servers": { "gitea-mcp": { "command": "docker", "args": [ "run", "-i", "--rm", "-e", "GITEA_HOST", "-e", "GITEA_ACCESS_TOKEN", "docker.gitea.com/gitea-mcp-server" ], "env": { "GITEA_HOST": "--host http://172.16.94.26", "GITEA_ACCESS_TOKEN": "${input:gitea_token}" } } } } } ``` #### 配置AI IDE/CLI使用私有大模型及MCP Server * Copilot,简要文字描述,不要上太多图,可以提供官方配置链接 * Cursor * Continue * ... ## 🚀 DevStar AI+ DevOps演示 在前面部署配置的基础上,我们以VSCode + Copilot或者Continue等为例,演示AI生成代码、触发CI/CD工作流及AI Code Review ### 创建一个项目 使用ai-develops项目模板创建项目 todo ### AI生成代码 todo ### 提交PR todo ### AI Code Review todo ### 合并PR todo